随着智能化技术的普及使用,市场渐渐不再满足于现有的智能化技术种类,而是寻求更新的算法、更丰富的业务应用、更整体化的系统应用,力求实现在应用的广度、深度上的突破。为此,安防行业已经开始进行对新一代智能视频分析技术的研究,提出了一些新的产品形态,新的应用模式,新的系统架构。这些新技术、新产品正在逐渐与市场结合,探求新的发展空间。
智能视频监控优势
快速的反应时间:毫秒级的报警触发反应时间;
更有效的监视:保安人员只需要注意相关信息;
强大的数据检索和分析功能:能提供快速的反应时间和调查时间。
运动检测是基础
绝大多数智能视频分析都是基于运动目标检测技术,即首先智能分析系统能准确地完成对运动目标的检测,将运动物体与图像背景有效分离,提取出运动目标信息。
从计算机视觉的实际应用上来看,运动目标检测与识别、分析所面临主要挑战和需解决问题可以归结为三个方面,即算法的鲁棒性、准确性、实时性。
鲁棒性
鲁棒性就是系统的健壮性,用以表征控制系统对特性或参数摄动的不敏感性。运动目标检测算法的鲁棒性是能够在各种环境条件下实现对运动目标持续、稳定的检测、分析和识别。
影响算法鲁棒性的最主要原因有如下几项:目标状态的改变、环境光照的变化、部分遮挡引起的目标不规则变形和全部遮挡引起的运动目标暂时消失。
准确性
运动目标检测和识别针对不同应用情况,其检测识别率不同,几乎无法实现100%检测成功,即存在误检和漏检情况。由于实际的监控场景环境复杂、千变万化,其中存在大量噪声和干扰情况,通过算法的优化可提高一定的检测准确率,同时往往只能根据实际需求,在误检率(虚警率)和漏检率(漏警率)之间寻求平衡折中。
实时性
一个实用的智能视频监控系统,必须具备能够对视频图像序列进行实时处理的能力。由于对视频动态图像的处理方法是建立在二维数字信号的处理基础上,所处理的对象包含巨大的数据量和信息量,要求算法不能计算太复杂,必须快速、实时。对于实时分析预警任务,计算复杂度是至关重要的,这样才能把系统更多的资源分配给更高级的任务。而这其中实时性和鲁棒性又常常是矛盾的,如何寻求平衡发展是技术的关键。
声明:
凡文章来源标明“中国智能交通网”的文章版权均为本站所有,请不要一声不吭地来拿走,转载请注明出处,违者本网保留追究相关法律责任的权利;所有未标明来源为“中国智能交通网”的转载文章均不代表本网立场及观点,“中国智能交通网”不对这些第三方内容或链接做出任何保证或承担任何责任。
征稿:
为了更好的发挥中国智能交通网资讯平台价值,促进诸位自身发展以及业务拓展,更好地为企业及个人提供服务,中国智能交通网诚征各类稿件,欢迎有实力的企业、机构、研究员、行业分析师投稿。投稿邮箱: itsshenzhen@163.com (查看征稿详细)